好看的国产精品_野花日本中文版免费观看_www日本高清_免费在线观看污视频

9000px;">
  • 技術文章

    Technical articles

    當前位置:首頁技術文章In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

    In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

    更新時間:2021-06-01點擊次數:2990

    In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-

            Performance Bifunctional Sensing Applications Tiantian Dai, Zanhong Deng, Xiaodong Fang,* Huadong Lu, Yong He, Junqing Chang, Shimao Wang, Nengwei Zhu, Liang Li,* and Gang Meng*

    1. Introduction

           Device fabrication/integration is a longstanding challenge issue for the practical application of metal oxide nanowires with distinctive physiochemical and unique quasi-1D geometric properties.[1–3] In comparison with conventional planar nanowire devices, in which postsynthesis alignment (Langmuir–Blodgett technique,[4] contact printing,[5] and blow bubble,[6] etc.) is first employed and then electrodes are deposited, by directly growing nanowires on the selected area of solid substrates with bottom electrodes, when the tips of nanowires growing on the counter electrodes encompass each other and form stable junctions, a “bridged” nanowire device could be formed (at a large scale) in an in situ manner.[7–10] Apart from the superior benefits of facile integration of nanowire devices, bridged nanowire devices outperform conventional planar nanowire devices in several aspects. First, in situ growth ensures good electrical contact between the nanowires and the underlying electrode,[11] which plays an essential role in the performance of diverse microelectronic devices, including sensors,[12] photodetectors,[13] field emitters,[14] and energy storage devices.[15] Second, a nonplanar (or suspended) configuration not only avoids carrier scattering at the nanowire/substrate interface (leading to increased mobility)[16] but also offers a maximal exposure surface for analyte molecule adsorption (acting as a gate-all-around effect) and thus offers an additional avenue for designing highly sensitive sensors with ultralow power consumption.[7,11,17,18] As an important p-type oxide with versatile properties, CuO nanowires have promising applications in molecular sensors for harmful vapor monitoring,[19–23] photodetectors,[24] field emitting devices,[25] energy storage devices,[26] etc. Previous studies indicate that the number and density of bridged nanowires play an important role in the device performance (i.e., response and power consumption of gas sensors),[7,27] therefore, a rational synthesis methodology is essential for constructing high-performance devices. Though thermal oxidation of Cu (powder, foil, wire, film, etc.) offers a simple and catalyst-free method[28,29] for anisotropic growth of CuO nanowires, driven by oxidation induced strain between the CuO/Cu2O interfaces, as well as the fast outer diffusivity of Cu ions across the CuO/ Cu2O/Cu interfaces[29,30] and thermal oxidation of Cu powder or sputtered (patterned) Cu film dispersed/deposited onto the electrode substrate enabling the formation of bridged nanowires,[8,19] weak adhesion (due to thermal oxidation induced strain),[31] poor uniformity and uncontrolled electrical pathways hinder their promising applications. In this work, a novel methodology based on dewetting of patterned Cu films to create ordered Cu microhemisphere arrays was reported. Ag layer was proposed as a sacrificial layer to assist the dewetting of Ag/Cu/Ag films into microhemispheres at a relatively low temperature of 850 °C. Sacrificial Ag could be readily removed by vacuum evaporation due to the higher vapor pressure of Ag than Cu. In comparison with previously reported Cu powder or Cu film devices, Ag-assisted dewetting significantly shrinks the contact area of Cu/substrate to ≈1–500 µm2 (depending on size), which allows effective release of the interfacial stress during thermal oxidation of Cu[31] and contributes to firm adhesion with the underlying substrate. In addition, the position and size of hemisphere Cu arrays could be readily controlled, which plays a vital role in manipulating the structural properties (diameter, length and bridging density of nanowires) of CuO nanowires grown by thermal oxidation on diverse insulator substrates with indium tin oxide (ITO) electrodes. The in situ formed regularly bridged CuO microhemisphere nanowire arrays (RB-MNAs) devices exhibit much higher gas molecule and light responses than irregularly bridged microsphere nanowires (IB-MNs) devices, fabricated by thermal oxidation of Cu powder dispersed on ITO electrode substrates. For example, the electrical response (toward 100 ppm trimethylamine, TMA) of the RB-MNAs device is 2.8 times as high as that of the IB-MNs device at an operation temperature of 310  °C. The on/off current ratio toward (15.6  mW cm−2 ) 810  nm of the RB-MNAs device is 1.5 times as high as that of the IB-MNs device. Finally, 4 × 4 RB-MNAs devices were integrated onto a transparent ITO/quartz wafer, demonstrating the potential of the present methodology for the mass production of bridged CuO nanowire devices for future applications.

     2. Results and Discussion

            Although dewetting of uniform patterned metal films offers an approach to obtain homogeneous metal micro/nanoparticle arrays,[32,33] dewetting of patterned Cu films (prepared by using Ni shadow masks, the geometric parameters are listed in Table S1, Supporting Information) fails even at a high temperature of 850  °C. The high melting point of Cu (1085  °C) probably hinders the shrinking of the patterned Cu film at 850  °C (Figure S1, Supporting Information). Binary Cu-metal phase diagrams indicate that CuAg alloy (with 71.9 wt% Ag) possesses a low melting temperature of 779 °C,[34] which suggests that alloying with Ag may facilitate the dewetting of Cu film. Moreover, as the vapor pressure of Ag is much higher than that of Cu, Ag may be removed by appropriate thermal evaporation. Inspired by the abovementioned analysis, the patterned Cu film was sandwiched between the top and bottom Ag sacrificial layers (Ag/Cu/Ag) on a SiO2/Si or quartz substrate coated by ITO interdigital electrode (Figure 1a,e). As expected, the Ag/Cu/Ag film (size of 10.5  µm, thickness of 1.2/1.2/1.2  µm, with a Ag weight ratio of ≈70%) could be dewetted into a hemisphere shape (inset of Figure 1f) via vacuum or inert gas atmosphere annealing in a tube furnace (to prevent oxidation of metals) at 850 °C (Figure 1b,f). A noticeable decrease in the diameter of hemispheres from 8.0 ± 0.3 µm (Figure S2a, Supporting Information) to 7.0  ± 0.3 µm (Figure S2b, Supporting Information) was observed after performing vacuum evaporation (850 °C, 0.1 Pa, 1 h) (Figure 1c,g and Figure S2, Supporting Information). Moreover, the appearance of a dark condensed metal film in the low-temperature zone of the quartz tube furnace infers the evaporation of Ag, because the vapor pressure of Ag (≈2.8 × 10−1  Pa) is much higher than that of Cu (≈2.3 × 10−3  Pa) at 850  °C.[35] Thermal oxidation of ordered Cu microhemispheres at 400–450  °C allows the formation of ordered hierarchical CuO microhemisphere nanowires (Figure  1d,h). Specifically, when the nanowires grown from adjacent Cu spheres contact each other, a bridged nanowire device could be formed in an “in situ” manner. To monitor the variation of sacrificial Ag, energy dispersive spectrometry (EDS) analysis was performed (Figure 1i–l). Pristine Ag/Cu/Ag shows a higher Ag ratio (78.5  wt%) than the nominal ratio (70.3 wt%), as EDS is a surface analysis method that can only collect the generated X-ray signal in a region of ≈2 µm in depth depending on the atomic number,[36] which is less than the thickness of the Ag/ Cu/Ag film (≈3.6  µm) in Figure  1e. The substantial decrease in the Ag component in the CuAg alloy from 62.7  wt% (Figure  1j) to a negligible 0.2 wt% (Figure  1k) via vacuum evaporation suggests that most of the sacrificial Ag was evaporated. Appearance of O signal in the dewetted CuAg and Cu hemispheres (Figure  1j,k) may arise from trace oxidization by remaining oxygen in the vacuum (≈0.1 Pa) tube furnace during dewetting and evaporation process. Moreover, the tiny variation in Cu volume from the initial Cu film (Figure 1e) to the hemisphere (Figure  1g) infers that Cu was maintained during the dewetting and evaporation process. The use of a Ag sacrificiallayer allows the fabrication of ordered Cu microhemisphere arrays (Figure  1c,g) on a solid substrate and further obtains ordered hierarchical CuO microhemisphere nanowire arrays (Figure 1d,h).

     

     

     

     

     

     

     

     

    以上論文信息不完整    感謝中科大的孟老師對微型探針臺的反饋!需要詳細的文獻,請到中科院一區  影響因子12    感謝所有的科研奉獻者辛勞的付出。

    好看的国产精品_野花日本中文版免费观看_www日本高清_免费在线观看污视频
  • 日韩激情一二三区| 日日夜夜免费精品视频| 成人手机在线视频| 亚洲免费高清视频在线| 91福利视频在线| 91免费观看在线| 国产精品亲子伦对白| 国产不卡视频在线观看| 亚洲少妇最新在线视频| 粉嫩av一区二区三区| 在线观看国产精品网站| 欧美一级理论性理论a| 国产大陆a不卡| 精品一区二区三区欧美| 亚洲精品亚洲人成人网在线播放| 国模大尺度一区二区三区| 青青草伊人久久| 亚洲尤物在线视频观看| 成人一级视频在线观看| 中文字幕永久在线不卡| 亚洲另类色综合网站| 久久精工是国产品牌吗| 色婷婷av一区二区三区大白胸| 麻豆精品一区二区综合av| 91看片淫黄大片一级在线观看| 国产精品白丝av| 成人欧美一区二区三区在线播放| 日精品一区二区三区| 精品成人一区二区三区四区| 日韩在线一区二区三区| 成人免费三级在线| 久久9热精品视频| 国产电影精品久久禁18| 99在线热播精品免费| 国产成人在线观看免费网站| 9i在线看片成人免费| 久久欧美中文字幕| 欧美高清在线精品一区| 亚洲精品亚洲人成人网在线播放| 国产精品色在线| 色婷婷香蕉在线一区二区| 日韩精品在线网站| 成人av网站大全| 日本女优在线视频一区二区| 99久久国产综合色|国产精品| 久久99国产精品免费网站| 欧美激情综合网| 欧美日韩一区二区三区四区五区| 免费成人在线视频观看| 国产电影精品久久禁18| 欧美亚洲精品一区| 欧美一级免费大片| 欧美一级日韩不卡播放免费| caoporn国产一区二区| 欧美日韩精品高清| 91麻豆精品国产91久久久使用方法| 制服丝袜av成人在线看| 国产精品久久二区二区| 日本亚洲视频在线| 亚洲另类在线视频| 99国产精品一区| 日本国产一区二区| 91传媒视频在线播放| 亚洲综合一区二区| 亚洲激情男女视频| 一本到不卡免费一区二区| 国产精品婷婷午夜在线观看| 欧美丝袜自拍制服另类| 色诱亚洲精品久久久久久| 一区二区三区在线视频观看| 精品国产一区二区国模嫣然| 婷婷综合久久一区二区三区| 国产欧美日韩精品一区| 欧美精品777| 久久蜜桃av一区精品变态类天堂| 国产在线不卡一区| 久久人人97超碰com| 午夜精品成人在线视频| 奇米777欧美一区二区| 国产一区不卡在线| 国产成人丝袜美腿| 国产精品美女久久久久久久久| 国产乱码一区二区三区| 国产午夜精品福利| 91福利区一区二区三区| 亚洲婷婷综合色高清在线| 青青国产91久久久久久| 午夜日韩在线电影| 午夜日韩在线观看| 午夜av区久久| 99国产精品久久久久久久久久久| 欧美日本一道本在线视频| 精品少妇一区二区三区视频免付费| 制服丝袜激情欧洲亚洲| 91麻豆精品国产| 丝袜美腿亚洲一区二区图片| 天堂影院一区二区| 日韩电影在线观看电影| 精品亚洲成a人| 午夜私人影院久久久久| 欧美伊人精品成人久久综合97| 91久色porny| 中文字幕亚洲一区二区av在线| 亚洲一区二区影院| 大尺度一区二区| 亚洲国产人成综合网站| 99精品一区二区| 亚洲国产成人一区二区三区| 成人免费的视频| 亚洲精品日韩专区silk| 国产精品久久久久久久久快鸭| 日本午夜精品一区二区三区电影| 久久66热偷产精品| 亚洲午夜私人影院| 欧美一二三四在线| 日韩午夜av电影| 欧美日韩一区精品| 性久久久久久久久久久久| 欧美一三区三区四区免费在线看| 色成人在线视频| 欧美精品久久99| 欧洲av在线精品| 色综合天天综合网国产成人综合天| 一区二区在线看| 亚洲美女淫视频| 日韩av在线播放中文字幕| 国产精品久久毛片av大全日韩| 欧美日韩久久不卡| 日韩亚洲欧美在线观看| 日韩美女一区二区三区四区| 亚洲成人激情综合网| 亚洲午夜久久久久久久久久久| 欧美国产乱子伦| 国产mv日韩mv欧美| 日韩视频永久免费| 97久久超碰精品国产| 国产精品国产成人国产三级| 日韩精品国产欧美| 久久欧美一区二区| 一级做a爱片久久| 亚洲色图视频免费播放| 国产精品88888| 色一情一伦一子一伦一区| 国产精品久久久久久久蜜臀| 亚洲综合一区在线| 欧美日韩国产区一| 99久久精品一区| 欧美一区二区三区思思人| 日韩成人一区二区三区在线观看| 亚洲一区免费观看| 国产激情精品久久久第一区二区| 日本一区二区三区视频视频| 国产成人激情av| 欧美日本一区二区三区四区| 在线成人免费观看| 国产欧美一区二区精品婷婷| 国产人久久人人人人爽| 国产美女精品在线| 日韩欧美一二三区| 欧美成人一区二区三区片免费| 在线亚洲一区观看| 欧美不卡一区二区| 亚洲国产美国国产综合一区二区| 在线精品视频小说1| 成人免费视频国产在线观看| 日韩中文字幕区一区有砖一区| 欧美α欧美αv大片| 久久福利资源站| 精品伦理精品一区| 欧美性猛交xxxx乱大交退制版| 人人狠狠综合久久亚洲| 日韩精品午夜视频| 国产精品美女久久久久久2018| 国产亚洲人成网站| 激情综合五月婷婷| 精品国产一区二区三区四区四| 色综合天天综合网国产成人综合天| 这里只有精品99re| 国产精品你懂的| 欧美一级电影网站| 1000精品久久久久久久久| 国产精品一区二区在线观看网站| 99精品一区二区三区| 日本vs亚洲vs韩国一区三区二区| 亚洲美女偷拍久久| 中文字幕精品在线不卡| 精品视频在线视频| 欧美在线制服丝袜| 亚洲欧美激情小说另类| 亚洲永久精品大片| 中文字幕二三区不卡| 欧美三级电影网站| 日韩一区在线播放| 日韩理论在线观看| 欧洲一区二区三区在线| 在线免费观看视频一区| 亚洲午夜一二三区视频| 国产片一区二区| www.日韩精品| 国产精品乱码一区二三区小蝌蚪|