好看的国产精品_野花日本中文版免费观看_www日本高清_免费在线观看污视频

9000px;">
  • 技術文章

    Technical articles

    當前位置:首頁技術文章MBE 氧化鎂薄膜真空紫外線光電探測器具有創紀錄高響應度

    MBE 氧化鎂薄膜真空紫外線光電探測器具有創紀錄高響應度

    更新時間:2024-09-26點擊次數:3696

    IEEE ELECTRON DEVICE LETTERS, VOL. 45, NO. 5, MAY 2024

    913

     

     

     

     

    MBE-Grown MgO Thin Film Vacuum Ultraviolet Photodetector With Record High Responsivity of 3.2 A/W Operating at 400 oC

    img1Lianjie Xin, Kewei Liu , Member, IEEE, Yongxue Zhu, Jialin Yang, Zhen Cheng, Xing Chen, Binghui Li, Lei Liu, and Dezhen Shen

     

     

    Abstract In this work, a high performance vacuum ultraviolet (VUV) photodetector (PD) based on MgO thin film has been fabricated and characterized from room tempera- ture to 400 ?C for the first time. At 25 ?C, the device exhibits a low dark current of 100 fA, a large VUV/UVC rejection

    ratio of over 104, a high responsivity of 0.865 A/W under 185 nm illumination, and a short response time of 1.25 µs at the bias of 20 V. The excellent thermal stability has also been demonstrated even at high temperature up to 400 ?C, exhibiting a record-high responsivity (3.2 A/W), a main- tained quick response speed (1.25 µs) and a large VUV/UVC

    rejection ratio (>103), which is obviously better than any other reported VUV detectors based on ultra-wide bandgap semiconductors. Additionally, this MgO PD demonstrates exceptional repeatability and long-term operating stability at both room temperature and elevated temperature. These findings underscore the outstanding performance of the MgO VUV PD, rendering it highly suitable for demanding operational conditions.

    Index TermsMgO, MBE, vacuum ultraviolet photode- tector, high-temperature.

     

    I.       INTRODUCTION

    I

    N RECENT years, vacuum ultraviolet (VUV) photodetec- tors (PDs) have garnered significant attention in the fields of

    space science [1], [2], electronic industry [3], [4], basic science

    and other related disciplines [5], [6], [7], [8], [9]. In general, the application of VUV detection often has to face extreme environments, such as ultra-high/-low temperatures, strong radiation and so on. To tackle these challenges, there has been considerable development and research focused on VUV PDs employing ultra-wide bandgap (UWBG) semiconductors [10], such as AlN [11], [12], [13], [14], [15], [16], [17], BN [18],

    [19] and MgO [20], due to their strong radiation resistance and thermal stability. Till now, AlN-based VUV PDs are the most studied, and the devices with metal–semiconductor–metal (MSM) structures based on single-crystal and polycrystalline AlN thin films have been extensively reported with excellent performance even at high  temperature,  but  the responsivity of  most  devices  is  still  not  very  high,  generally  less  than

    100 mA/W  [14],  [15],  [17].  Compared  with  AlN,  BN has a higher band edge absorption coefficient, and thus a large responsivity of 2.75 A/W at 160 nm has been demonstrated in a typical MSM-structured high-quality 2D few-layered h-BN photodetector [18]. However, the development of BN PDs is restricted by the material’s size and crystalline qual- ity,  and  the  responsivity  of  an  amorphous  BN  PD    under

     

    VUV  light  is  only  4.8  µA/W  at  10  V  bias  [19].  In addi-

     

    Manuscript  received  1  February  2024;  revised  11  March    2024;

    accepted 20 March 2024. Date of publication 26 March 2024; date of current version 26  April  2024.  This  work  was  supported  in part by the National Natural Science Foundation of China under Grant 62074148, Grant 61875194, Grant 11727902, Grant 12304111,  Grant

    12304112, and Grant 12204474; in part by the National Ten Thousand Talent Program for Young Top-Notch Talents, Youth Innovation Promo- tion Association, Chinese Academy of Science (CAS), under Grant 2020225; in part by Jilin Province Young and Middle-Aged Science and Technology Innovation Leaders and Team Project under Grant 20220508153RC; and in part by Jilin Province Science Fund under Grant 20220101053JC and Grant 20210101145JC. The review of this letter was arranged by Editor R.-H. Horng. (Corresponding author: Kewei Liu.)

    Lianjie Xin, Kewei Liu, Xing Chen, Binghui Li, Lei Liu, and Dezhen Shen are with the State Key Laboratory of Luminescence and Appli- cations, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China, and also with the Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China (

    Yongxue Zhu, Jialin Yang, and Zhen Cheng are with the State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.

    Color versions of one or more figures in this letter are available at

    Digital Object Identifier 10.1109/LED.2024.3381114

    tion, it is worth noting that the  preparation  of high-quality AlN and BN films usually requires a higher temperature (>800  ?C)  [19],  [21],  and  the  strict  preparation conditions

    and high costs hinder the large-scale development of their VUV PDs.

    In contrast, MgO, as a typical UWBG oxide semiconductor (band gap: 7.8 eV), is easier and less costly to prepare high-quality  films,  which  can  be  grown  at  relatively    low

    temperatures (<500 ?C). In addition, rocksalt structure   MgO

    has a high melting point of 2850 ?C and a strong radiation hardness [22], [23], [24], [25], [26], [27], [28]. Even more

    remarkably, a high responsivity of 1.86 A/W has been reported in a two-dimensional MgO-based VUV detector under an illumination of 150 nm light at 4 V due to the strong VUV absorption ability and high charge-collection efficiency of pho- togenerated carriers in MgO [20]. Therefore, it is expected that MgO has great prospects for highly sensitive VUV detection applications in extreme environments. However, up to now, there are very few reports on the research of MgO VUV detectors, especially their working characteristics in extreme environments (such as high temperatures) are still   blank.

     

     

    img2 

    Fig. 1.  (a) Top view and cross-sectional view SEM images and (b) XRD

    ω-2θ scans of MgO film on the sapphire substrate.

     

     

    In this work, MgO thin film was prepared by molecular beam epitaxy (MBE) on c-Al2O3 substrate at 450 ?C, followed by a high temperature post annealing at 1000 ?C. And a VUV PD with a planar MSM structure was constructed on MgO film and characterized at different temperatures from 25 ?C to

    400 ?C. At 25 ?C, MgO PD has a low dark current (100   fA

    at 20 V), a high responsivity (0.865 A/W at 185 nm) and a large VUV/UVC rejection ratio (more than 104). More inter- estingly, even at 400 ?C, the device still maintains an excellent VUV  detection  performance  with  a  high  responsivity     of

    3.2 A/W at 185 nm, a low dark current of 10 pA and a large VUV/UVC rejection ratio of >103  at 20 V,  which are much

    better than that  of  any  other  reported  VUV photodetectors at high temperature. Furthermore, it showcases exceptional long-term stability and reliability during high-temperature operation.

     

    II.       MATERIAL EPITAXY AND DEVICE  FABRICATION

    MgO film was grown on c-Al2O3 substrate at 450 ?C by MBE. Prior to  growing,  the  c-Al2O3  substrate  was treated at 650 ?C for 1 hour to make its surface cleaner. During 3-hour growth, the temperature of Mg source and O flux were controlled at 280 ?C and 1.1 sccm, respectively. Subsequently, the MgO film underwent  an  annealing  process  at  1000 ?C in an O2 atmosphere for one hour.  After  that,  a  MSM PD was constructed by preparing  Pt  interdigital  electrodes  on the annealed MgO film by photolithography and magnetron sputtering.

    The morphology and structural properties of thin films were studied using scanning electron microscope (SEM) (HITACHI S-4800), and a Bruker D8GADDS X-ray diffractometer (XRD). Agilent B1500A semiconductor device analyzer was used  to  characterize  the  time-dependent  photocurrent   (I-t)

    curves and current-voltage (I-V) characteristics curves of the device. The vacuum (1 Pa) and high temperature environ- ments required for the test are provided by a vacuum heating platform.

     

    III.       RESULTS AND DISCUSSION

    The top-view and the cross-sectional SEM images of MgO film are shown in Fig. 1a. The  thickness  of  the  MgO film can be estimated to be about 170  nm.  The  surface  of the film was uniform and appeared as evenly distributed triangular particles, corresponding to the (111) crystal plane of MgO. Fig. 1b shows the XRD ω-2θ scans of MgO film prepared on sapphire template. In addition to the (0006) peak of the

     

    img3 

     

    Fig. 2. IV characteristics (a) in the dark and (b) under 185 nm illumi- nation at different temperatures. (c) Time-dependent current measured at different temperatures under 185 nm light and 20 V applied bias.

    (d) Responsivity of the device as a function of wavelength at 25 ?C and

    400 ?C under 20 V bias.

     

     

    sapphire at 2θ = 41.68?, only one sharp peak can be observed at 2θ = 36.89?, which is assigned to the (111) plane of cubic rocksalt structure MgO. The XRD result is in good  agreement

    with SEM image.

    To investigate the optoelectric properties of MgO film, the photodetector with MSM structure (Pt interdigital electrodes with finger length of 3 mm, finger width of 20 µm and finger spacing of 20 µm.) has been demonstrated in this work. The I-V characteristic curves of the device were measured in both the absence of light (dark state) and under 185 nm illumination at various test temperatures are shown in Fig. 2a and 2b, respectively. It is clear that the device has an ultralow dark current of 100 fA at 25 ?C under 20 V bias. As the temperature increases, the dark current of the device gradually becomes larger, but it is still very low at 400 ?C, only about 7 pA at 20 V. Similarly, the photocurrent of the device also  shows an increase with increasing the temperature. Under 185 nm illumination (35 µW/cm2) at 20 V, the photocurrents of the device at 25 ?C and 400 ?C are 9.8 nA and 42 nA, respec- tively. The I-t characteristics of the device were examined by intermittently switching on and off the 185 nm lamp at various temperatures under a constant voltage of 20 V. As shown in Fig. 2c, the device has good stability as well as repeatability at both room and high  temperatures.

    Responsivity is another important parameter for a photode- tector, and the responsivity as a function of wavelength of MgO VUV PD is shown in Fig. 2d at 20 V bias. As shown in Fig. 2d, the responsivity of device at 185 nm is as high as 0.865 A/W at 25 ?C. More interestingly, the responsivity could be increased to 3.2 A/W as a high operating temperature of 400 ?C, corresponding an external quantum efficiency (EQE) of 2146%, which is much higher than that of any other previ- ously reported VUV PDs. The record high responsivity may be associated with the oxygen vacancies induced photoconductive

    gain  in  oxide  materials  [29],  [30].  In  addition,  it  should be  noted  that  the  responsivity  of  the  device  is  below   the

    instrumental detection limit (1 × 10?7  A/W) at wavelengths

     

     

    TABLE I

    img4img5img6img7img8img9img10COMPARISON TABLE  FOR PERFORMANCE PARAMETERS OF UWBG SEMICONDUCTOR VUV   PHOTODETECTORS

     

     

     

     

    img11        img12

     

    img13 

    Fig. 3. (a) Relationship between time (µs) and normalized ?I, the inset shows the variation of device fall time with load resistance (the red line represents a linear fit to the data). (b) Plots of decay time versus applied voltage and test temperature.

     

    longer than 310 nm both at 25 ?C and 400 ?C. And the VUV/UVC rejection ratios (R185/R255) at 25 ?C and 400 ?C are larger than 104and 103, respectively. This indicates that the device has excellent VUV spectral selectivity. The increase in the responsivity with increasing the operating temperature may

    be associated with the narrowing of the band-gap energy [31] and the increase of the density-of-state distribution caused by lattice expansion at high temperatures  [32].

    To delve deeper into the device’s response speed, the tran- sient response characteristics of the MgO PD was examined by 193 nm ArF excimer laser. As shown in Fig. 3a, at 20 V bias voltage and load resistance of 10 kK, 90-10% decay time is only about 1.25 µs. The inset of Fig. 3a shows the variation of the device’s decay time as a function of the resistance of series resistor, and a linear relationship between decay time and load resistance shows that the decay time of the device is limited by the  resistance-capacitance  (RC)  time constant of the test system [15]. Fig. 3b shows the decay time versus applied voltage and test temperature. It can be clearly seen that whether the test temperature is increased or the bias is increased, the decay time remains almost  unchanged.

    It is also important to study the stability of MgO PD. Fig. 4a

    illustrates the I-t curves of the device operating  continuously at 400 ?C for one hour. There is almost no fluctuation in the photocurrent and dark current of the device, which shows that MgO VUV PD can work very stably under high temperature environment. Moreover, we conducted a long follow-up  test on MgO PD and the results are shown in Fig. 4b. It should be mentioned here that our MgO PDs were stored in a drying cabinet at a temperature of around 24 ?C and a humidity of about 3%. Clearly, MgO PD shows very good stability at both

    Fig. 4. (a) I-t plot of the device continuously tested for one hour under 185 nm light at 400 ?C. (b) Long-term operating stability of the device at 25 ?C and 400 ?C.

     

    room temperature and high temperature during the 120 days tracking test.

    The main performance parameters of VUV PDs based on UWBG semiconductors are summarized in the Table I. It is obvious that our MgO VUV detector has excellent overall performance, especially its responsivity (3.2 A/W at 185    nm

    at  20  V)  at  400  ?C  high  temperature  is  the  highest value

    reported so far. The rejection ratio, dark current and response time of our device are also better than those of most other reported devices. The good performance of this MgO VUV PD may be associated with the suitable band  gap  of  the MgO material, large VUV absorption coefficient [33], and the photoconductivity gain induced by the oxygen vacancies in the oxide [29],  [30].

     

    IV.       CONCLUSION

    In summary, MgO thin  film  was  prepared  by  MBE  at 450 ?C, and a high-performance VUV PD was demonstrated by preparing Pt interdigital electrodes on it. The MgO PD shows a high responsivity of 865 mA/W (185 nm), low dark

    current of 1 × 10?13 A, high VUV/UVC rejection ratio of more than 104  at 25 ?. Even at 400 ?, the device still maintains

    a highly sensitive, stable and fast response to the VUV light with a record high responsivity of 3.2 A/W at 185 nm. Overall, MgO thin film exhibits excellent VUV photoresponse at both room and high temperatures, and is expected to be used for cost-effective high-temperature VUV photodetection.

     


    好看的国产精品_野花日本中文版免费观看_www日本高清_免费在线观看污视频
  • 国产女人水真多18毛片18精品视频| 极品少妇xxxx偷拍精品少妇| 欧美性做爰猛烈叫床潮| 欧美色视频在线| 亚洲国产精品激情在线观看| 欧美大白屁股肥臀xxxxxx| 国产盗摄精品一区二区三区在线| 一区二区三区中文字幕| 亚洲黄一区二区三区| 日韩欧美不卡一区| 亚洲成人在线观看视频| 久久精品一区八戒影视| 亚洲猫色日本管| 日本成人中文字幕在线视频| 丁香激情综合五月| 51精品国自产在线| 538prom精品视频线放| 欧美精品亚洲二区| 欧美电影免费观看高清完整版| 成人av先锋影音| 成人一区在线观看| 久久成人av少妇免费| 欧美一级片在线观看| 一本到不卡精品视频在线观看| 国产白丝精品91爽爽久久| 另类中文字幕网| 99久久久免费精品国产一区二区| 在线国产亚洲欧美| 99久久免费精品| 日韩毛片在线免费观看| 欧美日韩精品福利| 精品免费国产一区二区三区四区| 午夜久久福利影院| 日韩精品中文字幕一区| 日产国产高清一区二区三区| 911精品国产一区二区在线| 亚洲一区免费视频| 粉嫩久久99精品久久久久久夜| 亚洲欧美福利一区二区| 欧美三级三级三级| 激情综合一区二区三区| 亚洲四区在线观看| 91一区二区三区在线观看| 精品日韩在线观看| 亚洲综合免费观看高清在线观看| av电影在线不卡| 日韩毛片视频在线看| 亚洲另类色综合网站| 亚洲欧洲三级电影| 国产精品乱码妇女bbbb| 欧美激情在线看| 色噜噜狠狠色综合欧洲selulu| 777色狠狠一区二区三区| 日韩精品成人一区二区三区| 亚洲图片你懂的| 精品国产sm最大网站| 一区二区三区av电影| 91精品国产色综合久久ai换脸| 激情av综合网| 色婷婷国产精品久久包臀| 亚洲电影中文字幕在线观看| 日韩一区二区免费在线观看| 亚洲码国产岛国毛片在线| 色综合久久九月婷婷色综合| 国产欧美视频一区二区| 26uuu欧美| 日本强好片久久久久久aaa| 国产精品一级片在线观看| 亚洲欧美日韩系列| 大尺度一区二区| 国产河南妇女毛片精品久久久| 中文字幕在线一区免费| 国产精品二区一区二区aⅴ污介绍| 久久精品国产999大香线蕉| 精品一区二区国语对白| 日韩欧美视频在线| 丝袜美腿亚洲色图| 日韩精品久久久久久| 欧美日韩在线一区二区| 色94色欧美sute亚洲线路一ni| 国产精品天美传媒沈樵| 欧美午夜精品久久久久久超碰| 夜夜揉揉日日人人青青一国产精品| 91精品一区二区三区久久久久久| 亚洲一区二区精品久久av| 精品视频免费看| 色综合久久久久久久久久久| 蜜臀av亚洲一区中文字幕| 欧美经典一区二区三区| 日韩av在线播放中文字幕| 亚洲欧美一区二区三区久本道91| 欧美日韩成人综合天天影院| 精品久久久久久久久久久久包黑料| 国产精品无人区| 91亚洲大成网污www| 成人av免费观看| 老汉av免费一区二区三区| 亚洲另类在线制服丝袜| 精品国产凹凸成av人导航| 欧美婷婷六月丁香综合色| 亚洲香肠在线观看| 久久99国产精品麻豆| 日韩av不卡在线观看| 国产精品精品国产色婷婷| 久久精品欧美日韩精品| 91.xcao| 国产精品久久久久久亚洲毛片| 日韩免费一区二区三区在线播放| 7878成人国产在线观看| 日韩视频在线你懂得| 国产精品青草综合久久久久99| 亚洲丝袜精品丝袜在线| 欧美—级在线免费片| 亚洲va韩国va欧美va精品| 亚洲欧洲精品一区二区三区| 乱一区二区av| 欧美激情综合五月色丁香| 精品久久一区二区| 国产一区二区在线观看视频| 99久久er热在这里只有精品66| 琪琪久久久久日韩精品| 亚洲精品ww久久久久久p站| 日韩三级视频在线看| 色婷婷国产精品综合在线观看| 亚洲精品国产精品乱码不99| 91一区二区三区在线观看| 国产精品资源在线| 日韩福利电影在线观看| 国产精品久久久久久久久图文区| 亚洲精品欧美二区三区中文字幕| 91精品国产入口| 久久色成人在线| 色素色在线综合| 欧美视频中文字幕| 欧美日韩三级在线| 色综合久久88色综合天天| 最新国产の精品合集bt伙计| 亚洲第一福利一区| 日韩中文字幕av电影| 欧美一级电影网站| 日韩经典一区二区| 欧美偷拍一区二区| 国产精品影视网| 另类的小说在线视频另类成人小视频在线| 欧美国产一区视频在线观看| 日韩av成人高清| 亚洲精品videosex极品| 成人动漫中文字幕| 911精品产国品一二三产区| 国产精品一区在线观看你懂的| 精品一区二区三区欧美| 精品一区二区在线视频| 精品国内二区三区| 欧美群妇大交群的观看方式| 国产1区2区3区精品美女| 久久精品国产亚洲aⅴ| 久久综合九色综合97_久久久| 91精品婷婷国产综合久久| 亚洲综合成人在线| 欧美成人a在线| 国产精品久久久久aaaa樱花| 国产成人av一区二区三区在线观看| 久久久777精品电影网影网| 久久国产精品区| 一本大道久久精品懂色aⅴ| 日韩成人一区二区| 色偷偷一区二区三区| 欧美日韩精品一区二区天天拍小说| 亚洲免费资源在线播放| 日韩视频在线观看一区二区| 日韩精品成人一区二区在线| 日本久久一区二区| 欧美mv日韩mv国产网站| 欧美性受极品xxxx喷水| 在线视频观看一区| 中文字幕在线视频一区| 成人黄动漫网站免费app| 国产精品亚洲第一区在线暖暖韩国| 天天操天天综合网| 亚洲天堂精品视频| 亚洲一二三四在线| 亚洲综合成人网| 国产精品久久久久久亚洲毛片| 日韩午夜在线播放| 日韩三级视频在线观看| 色噜噜狠狠一区二区三区果冻| 这里只有精品99re| 久久久三级国产网站| 91在线小视频| 精品免费日韩av| 亚洲免费av高清| 亚洲国产日韩一级| 色久综合一二码| 中文字幕高清不卡| 一本大道久久a久久综合婷婷| 亚洲图片一区二区| 国产精品女人毛片| 成人午夜碰碰视频| 久久―日本道色综合久久| 国产在线精品一区二区不卡了|